一级特黄爽大片刺激在线|精品综合久久久久久88|亚洲中文字幕www网站|亚洲喷奶水中文字幕视频

      1. 2019教師招聘考試高中數(shù)學(xué)知識(shí)點(diǎn):二次函數(shù)

        來(lái)源:時(shí)間:2019-01-24 17:35:59責(zé)任編輯:liujunxia

        關(guān)鍵詞: 全國(guó)招教

        • 報(bào)名條件
        • 考試指南
        • 歷年考情
        • 選課報(bào)班
        專業(yè)老師在線答疑

        2019教師招聘考試高中數(shù)學(xué)知識(shí)點(diǎn):二次函數(shù)


        I.定義與定義表達(dá)式

        一般地,自變量x和因變量y之間存在如下關(guān)系:

        y=ax^2+bx+c

        (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)

        則稱y為x的二次函數(shù)。

        二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

        II.二次函數(shù)的三種表達(dá)式

        一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

        頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]

        交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

        注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

        h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

        III.二次函數(shù)的圖像

        在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,

        可以看出,二次函數(shù)的圖像是一條拋物線。

        IV.拋物線的性質(zhì)

        1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線

        x=-b/2a。

        對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

        特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

        2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

        P(-b/2a,(4ac-b^2)/4a)

        當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

        3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

        當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。

        |a|越大,則拋物線的開(kāi)口越小。

        4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

        當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

        當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

        5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

        拋物線與y軸交于(0,c)

        6.拋物線與x軸交點(diǎn)個(gè)數(shù)

        Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

        Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

        Δ=b^2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

        V.二次函數(shù)與一元二次方程

        特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

        當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

        即ax^2+bx+c=0

        此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。

        函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

        1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表:

        解析式

        頂點(diǎn)坐標(biāo)

        對(duì)稱軸

        y=ax^2

        (0,0)

        x=0

        y=a(x-h)^2

        (h,0)

        x=h

        y=a(x-h)^2+k

        (h,k)

        x=h

        y=ax^2+bx+c

        (-b/2a,[4ac-b^2]/4a)

        x=-b/2a

        當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,

        當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

        當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

        當(dāng)h>0,k<0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

        因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

        2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a<0時(shí)開(kāi)口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

        3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減?。?/span>

        4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

        (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

        (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

        (a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|

        當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);

        當(dāng)△<0.圖象與x軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.

        5.拋物線y=ax^2+bx+c的值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y小(大)值=(4ac-b^2)/4a.

        頂點(diǎn)的橫坐標(biāo),是取得值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是值的取值.

        6.用待定系數(shù)法求二次函數(shù)的解析式

        (1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

        y=ax^2+bx+c(a≠0).

        (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).

        (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

        7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).



        2025年教師招聘官方微信客服

        • 公告資訊
        • 學(xué)習(xí)答疑
        • 1對(duì)1指導(dǎo)
        • 筆試資料
        • 面試技巧
        • 公開(kāi)講座

        手機(jī)微信掃描左側(cè)二維碼,添加客服老師微信領(lǐng)取


        收藏

        復(fù)制鏈接

        微信掃一掃

        2025年教師招聘考試備考干貨下載

        互動(dòng)交流

        • 微信客服咨詢

          添加微信客服
          隨時(shí)隨地答疑解惑

          “碼”上添加
        • 歷年試題 0元下載

          6大學(xué)科,100套試題
          學(xué)練結(jié)合,查漏補(bǔ)缺

          “碼”上領(lǐng)取
        • 測(cè)測(cè)你是否適合當(dāng)老師

          學(xué)歷年齡分析,資格證書分析
          報(bào)考地分析,歷年考情分析

          “碼”上測(cè)試分析

        手機(jī)登錄下載

        微信掃碼下載

        微信掃一掃,即可下載

        — 登錄賬號(hào),免費(fèi)查看完整備考資料 —

        每日一練

        歷年試題

        面試寶典

        時(shí)政熱點(diǎn)

        歡迎登錄